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Condensation (evaporation) of droplets  in an a tmosphere  of sa tura ted  vapor  is analyzed. 
The equation of t r ans ien t  heat conduction with a va r iab le  drople t  radius  is solved on a 
computer .  Universa l  g raphs  a re  plotted fo r  calculating both the heating and the condensa-  
tion ra te .  

In many prac t ica l  si tuations the evapora t ion  or the condensation of droplets  occurs  in an a tmo-  
sphere  of sa tura ted  vapor  whose par t ia l  p r e s s u r e  is equal to unity. We will cons ider  the case  where  the 
drople t  radius  is much l a rge r  than the f r ee  path of molecules .  Supersa tura t ion ,  which is  poss ible  during 
condensation, will be d i s regarded .  

Without detract ing f rom general i ty ,  we will analyze the condensation of drople ts ,  assuming the 
initial drople t  t e m p e r a t u r e  T o to be lower than the vapor  sa tura t ion  t empe ra tu r e  T V. Under these a s s u m p -  
tions, the vapor  t e m p e r a t u r e  may  be considered constant  down to the drople t  sur face ,  because  a t e m p e r a -  
ture  drop at the sur face  would produce a corresponding v a p o r - p r e s s u r e  drop with a high ra te  of convective 
heat  and m a s s  t r ans fe r ,  which in turn would tend to equalize both the p r e s s u r e  and the t empera tu re .  Ac-  
cordingly, the drople t  buildup during condensation is de termined f r o m  the boundary conditions at its dilating 
sur face :  

(~r-r)r=R(t) (i) 

Henceforth we will consider  only drople ts  with smal l  d i ame te r s  in a low-veloci ty  s t r e am,  for  which 
Pe < 1. Convective heat  t r ans f e r  inside a drople t  is negligible at a low Pec le t  number  [1, 2]. In this case  
the prob lem of de termining  the condensation ra te  of sa tura ted  vapors  reduces  to solving the equation of 
t r ans ien t  heat  conduction 

a T  :~ a . ~ ( r 2 a T ~  (2) 
Ot r ~ Or \ Or J 

with the boundary conditions (1) and 

and the initial  condition 

(T)r=o ~ co; (T)~=R(0 = T v (3) 

(R)t=o =Ro; (T)t=o=To. 

We will now introduce the d imens ionless  va r i ab l e s  

(4) 

R . r . T - -  T O . at 
P =  R-~' 9 =  ~ ,  0 =  Tv--T~o' ~ =  R~ ~ . (5) 
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Here  

r = Rop, R = PRo, 

0 1 0 OT a O0 
0~- = R~ 09 ' Ot R~oo . (TV-  To) 0~- 

and (1)-(4) can be r ewr i t t en  as 

oo • o(o ) 
O-T = p~ "Op-  02 , (2a) 

(O)p=o :/: oo, (O)p=v(~)-~ l, (3a) 

dp( ) ( iv - i , .  /,. 
co (Tv--To) ! 

(P)~=o= 1, (o)~=o=O 
(9.<. P (-c)). (4a) 

We next find the m a x i m u m  size of a droplet .  
alent  averaged equation of heat  balance 

4 ~R~YLC~d ~ = 4~R~yL [iV_iL+Co(T v ~] dR 
3 

or,  in d imens ion less  va r i ab les  (5), 

3 (1 +K--O) P (~) 

With P = 1 and O- = O, integrat ing (7) yields 

i 

I + K - - O  

The pr incipal  condition (1) will be replaced  by an equiv-  

(6) 

(7) 

(8) 

Since 0 ~  l w h e n z ~  % hence the m a x i m u m  value of P(r) is 

1 

(9) 

According to (9), P m a x - 1  << 1 when K >> 1. 

In this case  the dilation of the drople t  sur face  may  be d i s regarded  and the solution of Eq. (2a) r e -  
duces to the conventional sphere  heating problem with the boundary condition (3a) and P(r) = 1. Moreover ,  
into Eq. (la) for  the condensation ra te  we in se r t  the value of O(p) obtained f r o m  the solution to Eq. (2a) with 
a s t a t ionary  boundary.  

When the heat  of evapora t ion  is high and the t empe ra tu r e  di f ference T v - T  0 is smal l ,  then K >> 1. 
At a t e m p e r a t u r e  of sa tura ted  vapor  near  the c r i t i ca l  point, however,  K can be of the o rder  of unity or  
l ess  than unity and the drople t  buildup mus t  be taken into account in solving the equation of heat  conduction. 

The p rob lem was solved numer ica l ly  by the nonlinear var ia t ional  difference scheme [3]: 

i+i 2 �9 [ P ~ _  (0i+i)~]~ = ( 0 ~ ) ~ o ~  (i 4 i 4 , ~ - 1 ,  i=0 ,  1 . . . . .  ) ,  (10) 

( n i+1 ~ --~t(P/- +1 (11) -n]+l]. ~ - x  z ' 

Oni+ ~=1, 0 ~  Po s 1, (12) 

wi th  pi +l /2  denot ing the value of p at point i + l / 2 ,  wi thp l /2  =0 ,  a n d v i + l  "+l v !+ l  v ~  , denoting the dif-  
l p  ' I T  

fe rence  ra t ios  of function v: cent ra l  with r e spec t  to p at point i + 1 /2 ,  backward with r e spec t  to p at point i, 
] + 1  

and backward with r e s p e c t  to r at point Tj +l = Z (AT)m* 
m = l  
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Fig .  1. D i m e n s i o n l e s s  t e m p e r a t u r e  
a s  a func t ion  of 7: 1) K = 0.1; 2} 0.5; 3) 
i - i 0 0 .  
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Fig .  2. R a t i o  ( P ( T ) - - I ) / ( P m a x - 1 )  as  a 
func t ion  of 7: 1) K = 2-200;  2) 1; 3) 0.5; 

4) 0.1. 

One can  p rove ,  on the  b a s i s  of (3)-(7),  tha t  the  a p p r o x i m a t e  s o l u t i o n  (10)-(12) c o n v e r g e s  t o w a r d  the 
e x a c t  s o l u t i o n  and thus  

R(~) T R (~) 

0 0 0 

where c I is determined by K and T only while 0~ is the polylinear complement of 0 h [3]. Equations (i0)- 
(12) were solved by the method of successive approximations with an appropriate choice of h i and (AT)j +t 
steps. The calculation was carried to an asymptotic value P(~) accurate to the fourth decimal. 

The problem can also be solved by the method shown in [8] or by certain modifications of it. As can 
be demonstrated theoretically and as has been shown by trial computer calculations, however, this method 
is cumbersome because of the many operations required - more than in the grid method. 

The results of computations are shown in Figs. I and 2. In Fig. 2 is shown the dimensionless mean 
temperature O as a function of the Fourier number f at various values of K. In Fig. 2 is shown the cor- 
responding relative change in the dimensionless droplet radius (P(T) -i)/(Pmax-l) as a function of 7, with 
Pmax determined according to Eq. (9). 

It follows from these graphs that, for solving the equation of heat conduction, dilation of the droplet 
surface may be disregarded when K > 2. 

When K < i, the condensation mode begins to deviate considerably from the quasisteady state. 
Numerical calculations were made for values of K down to 0.i. Such small values of K are attained in the 
case of ordinary liquids at vapor temperatures near the critical point. We note that to the limiting transi- 

tion T v --~ Tcr corresponds K --* 0 and, according to (9), a maximum increase in the droplet volume Pmax 
-* ~. For very small values of K, however, the assumptions made in this analysis merit further scrutiny. 

T 

r 
R 

Y 
i 
a 

C v 

K = (i v - i L )  / c v (T v 7- To); 
0 = ( T - T o ) / ( T v - - T o ) ;  
7 : at/R  

p = R / R 0 ;  
p = r / R  0. 

N O T A T I O N  

i s  the  t e m p e r a t u r e ;  
i s  the  r a d i a l  c o o r d i n a t e  in  the  d r o p l e t ;  
i s  the d r o p l e t  r a d i u s ;  
i s  the dens i t y ;  
i s  the en tha lpy ;  
i s  the t h e r m a l  d i f fus iv i ty ;  
i s  the s p e c i f i c  hea t  of the  l iquid ;  

i s  the  F o u r i e r  n u m b e r ;  

S u b s c r i p t s  

0 deno t e s  the  i n i t i a l  va lue ;  
L deno t e s  the  l iquid;  
V deno t e s  the  v a p o r .  
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