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SPHERICAL DROPLET UNDER NEAR-CRITICAL CONDITIONS
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Condensation (evaporation) of droplets in an atmosphere of saturated vapor is analyzed.
The equation of transient heat conduction with a variable droplet radius is solved on a
computer, Universal graphs are plotted for calculating both the heating and the condensa-
tion rate,

In many practical situations the evaporation or the condensation of ciroplets occurs in an atmo-
sphere of saturated vapor whose partial pressure is equal to unity. We will consider the case where the
droplet radius is much larger than the free path of molecules. Supersaturation, which is possible during
condensation, will be disregarded.

Without detracting from generality, we will analyze the condensation of droplets, assuming the
initial droplet temperature T, to be lower than the vapor saturation temperature Ty. Under these assump-
tions, the vapor temperature may be considered constant down to the droplet surface, because a tempera-
ture drop at the surface would produce a corresponding vapor-pressure drop with a high rate of convective
heat and mass transfer, which in turn would tend to equalize both the pressure and the temperature, Ac-
cordingly, the droplet buildup during condensation is determined from the boundary condltlons at its dilating
surface:
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Henceforth we will consider only droplets with small diameters in a low-velocity stream, for which
Pe < 1. Convective heat transfer inside a droplet is negligible at a low Peclet number [1, 2]. In this case
the problem of determining the condensation rate of saturated vapors reduces to solving the equation of
transient heat conduction
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and the initial condition
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We will now introduce the dimensionless variables

L S N - (5)
Ro Ro TV - To 0

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23 No. 2, pp. 212-216, August, 1972. Orig-
inal article submitted October 14, 1971,

© 1974 Consultants Bureau, a division of Plenuin Publishing Corporation, 227 West 17tk Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for $15.00.

946



Here

r=Rp, R=PR,,

o _ 1 0 O _a 08
or R, o0 o RV Yo
and (1)-@) can be rewritten as
9 19,00 | S
ot p2 ap ap
O)o=0 # 00, Bp=pm=1, (3a)
6 Ter 7
«i)_ dePM(K:,Jl_i_)L a)
90 Jo=p(v) dt ¢y (Ty—Ty) .

(Plemo=1, (8)r—o=0

(<P (). 8

We next find the maximum size of a droplet. The principal condition (1) will be replaced by an equiv-
alent averaged equation of heat balance

4 — —
T aRy, ¢, dT = 4aR%y [iy—ip +e, (Ty—T)] dR (6)

or, in dimensionless variables (5),
de _ _dP(@)
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With P =1 and § =0, integrating (7) yields
fO1EK \F
P)=|—r—=1 . (8)
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Since g — 1 when 7 — «, hence the maximum value of P(7) is

1

1\%
Pmax: 1 - . 9
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According to (9), Pyax—1 « 1 when K> 1.

In this case the dilation of the droplet surface may be disregarded and the solution of Eq. (2a) re-
duces to the conventional sphere heating problem with the boundary condition (3a) and P(r) = 1. Moreover,
into Eq. (1a) for the condensation rate we insert the value of 0(p) obtained from the solution to Eq. (2a) with
a stationary boundary. '

When the heat of evaporation is high and the temperature difference Ty —T, is smail, then K > 1.
At a temperature of saturated vapor near the critical point, however, K can be of the order of unity or
less than unity and the droplet buildup must be taken into account in solving the equation of heat conduction.

The problem was solved numerically by the nonlinear variational difference scheme [3]:

[pﬁl_(egiﬂ)g]p—:(e#‘);p% (I<i<nyy—1, j=0, 1,...)), (10)
( ei;j.jl)p_»KP’;—* g (11
0., =1, 62=0, P, =1, (12)

with p4 +1/2 denoting the value of p at pointi +1/2, with P1/2 = 0, and Vijp+1’ vL“, vitt denoting the dif-
ip it
ference ratios of function v: centra] with respect to p at point i + 1/2, backward with respect to p at point i,
j+1
and backward with respect to 7 at point 75,y = 3 (A7),

m=1
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One can prove, on the basis of (3)-(7), that the approximate solution (10)-(12) converges toward the
exact solution and thus
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where ¢; is determined by K and T only while ¢, is the polylinear complement of 6y, [3]. Equations (10)-
(12) were solved by the method of successive approximations with an appropriate choice of hj and (AT) j+
steps. The calculation was carried to an asymptotic value P(«) accurate to the fourth decimal,

The problem can also be solved by the method shown in {8] or by certain modifications of it. As can
be demonstrated theoretically and as has been shown by trial computer calculations, however, this method
is cumbersome because of the many operations required — more than in the grid method.

The results of computations are shown in Figs, 1 and 2, In Fig. 2 is shown the dimensionless mean
temperature g as a function of the Fourier number r at various values of K. In Fig. 2 is shown the cor-
responding relative change in the dimensionless droplet radius (P(1) —1)/ (Ppax—1) as a function of r, with
Pphax determined according to Eq. (9).

It follows from these graphs that, for solving the equation of heat conduction, dilation of the droplet
surface may be disregarded when K > 2.

When K < 1, the condensation mode begins to deviate considerably from the quasisteady state,
Numerical calculations were made for values of K down to 0.1. Such small values of K are attained in the
case of ordinary liquids at vapor temperatures near the critical point. We note that to the limiting transi-
tion Ty — Tqp corresponds K — 0 and, according to (9), a maximum increase in the droplet volume Ppjax
— w, For very small values of K, however, the assumptions made in this analysis merit further scrutiny.

NOTATION

is the temperature;

is the radial coordinate in the droplet;
is the droplet radius;

is the density;

is the enthalpy;

is the thermal diffusivity;

is the specific heat of the liquid;

Q& =2 Mg

Cy
8 = (T-Ty/ (Ty—Ty);

T = at/R} is the Fourier number;
P = R/Ro;
p = I'/Ro.

Subscripts

0 denotes the initial value;
L denotes the liquid;
\% denotes the vapor,
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